Optimal minimum wage policy in competitive labor markets

David Lee a, Emmanuel Saez b,*

a Department of Economics, Princeton University, Industrial Relations Section, Firestone Library A-16-J-1, Princeton, NJ 08544, USA
b University of California, Department of Economics, 530 Evans Hall #3880, Berkeley, CA 94720, USA

A R T I C L E I N F O

Article history:
Received 21 September 2011
Received in revised form 21 May 2012
Accepted 1 June 2012
Available online 9 June 2012

Keywords:
Minimum wage
Optimal taxation

A B S T R A C T

This paper provides a theoretical analysis of optimal minimum wage policy in a perfectly competitive labor market and obtains two key results. First, we show that a binding minimum wage – while leading to unemployment – is nevertheless desirable if the government values redistribution toward low-wage workers and if unemployment induced by the minimum wage hits the lowest surplus workers first. Importantly, this result remains true in the presence of optimal nonlinear taxes and transfers. In that context, a binding minimum wage enhances the effectiveness of transfers to low-skilled workers as it prevents low-skilled wages from falling through incidence effects. Second, when labor supply responses are along the extensive margin only, which is the empirically relevant case, the co-existence of a minimum wage with a positive tax rate on low-skilled work is always (second-best) Pareto inefficient. A Pareto improving policy consists of reducing the pre-tax minimum wage while keeping constant the post-tax minimum wage by increasing transfers to low-skilled workers, and financing this reform by increasing taxes on higher paid workers. Those results imply that the minimum wage and subsidies for low-skilled workers are complementary policies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The minimum wage is a widely used but controversial policy tool. A minimum wage can increase low-skilled workers' wages at the expense of other factors of production–such as higher skilled workers or capital–and hence can be potentially useful for redistribution. However, it may also lead to involuntary unemployment, thereby worsening the welfare of workers who lose their jobs. A large empirical literature has studied the extent to which the minimum wage affects the wages and employment of low-skilled workers (see e.g., Card and Krueger (1995), Brown (1999), or Neumark and Wascher (2007) for extensive surveys). The normative literature on the minimum wage, however, is much less extensive.

This paper provides a normative analysis of optimal minimum wage policy in a conventional competitive labor market model, using the standard social welfare framework adopted in the optimal tax theory literature. Our goal is to use this framework to illuminate the trade-offs involved when a government sets a minimum wage, and to shed light on the appropriateness of a minimum wage in the presence of optimal taxes and transfers.

The first part of the paper considers a competitive labor market with no taxes/transfers. Although simple, this analysis does not seem to have been formally derived in the previous literature. We show that a binding minimum wage is desirable as long as the government values redistribution from high- to low-wage workers, the demand elasticity of low-skilled labor is finite, the supply elasticity of low-skilled labor is positive, and most importantly, that the unemployment induced by the minimum wage is efficient, i.e. unemployment hits workers with the lowest surplus first. The intuition is extremely simple: starting from the competitive equilibrium, a small binding minimum wage has a first order positive distributional effect but only a second order negative effect on efficiency as only marginal workers initially lose their job.

The second part of the paper considers the more realistic case where the government also uses taxes and transfers for redistribution. In our model, we abstract from the hours of work decision and focus only on the job choice and work participation decisions. Such a model can capture both participation decisions (the extensive margin) as well as decisions whereby individuals can choose higher paying occupations by exerting more effort (the intensive margin). In that context, the government observes only earnings, but not the utility work costs incurred by individuals.1 In such a model, we show that a minimum wage is desirable if unemployment induced by the minimum wage is efficient and the government values redistribution toward low-skilled workers. The intuition for this result is the following. A binding

1 We also show in Section 5 that our results extend to a model with variable hours of work under the strong and unrealistic assumption that the government can set specific linear tax rates on each type of labor. As recognized previously (see e.g., Guesnerie and Roberts (1987)), the theoretical drawback of the model with variable hours of work is that although the government observes wage rates to impose the minimum wage, it does not use this information to design the optimal tax, which creates an informational inconsistency in the government decision making.
minimum wage enhances the effectiveness of transfers to low-skilled workers as it prevents low-skilled wages from falling through incidence effects. This result can also be seen as an application of the Guennerie (1981) and Guennerie and Roberts (1984) theory of quantity controls in second best economies. When the government values redistribution toward low-skilled workers, the optimal tax system over-encourages the supply of low-skilled labor. A minimum wage effectively rations over-supplied low-skilled labor, which is socially desirable. Unsurprisingly, if rationing is uniform (i.e., unemployment hits randomly and independently of surplus), then the minimum wage does not reveal anything on costs of work and it cannot improve upon the optimal tax/transfer allocation.

Finally, when labor supply responses are solely along the participation margin, a realistic assumption supported by the empirical labor supply literature, we show that imposing a positive tax rate on the earnings of minimum wage workers is second-best Pareto inefficient. Reducing the minimum wage and compensating low-skilled workers with higher transfers financed by extra taxes on high-skilled workers lead to a Pareto improvement. This result remains true even if rationing is inefficient. This result is therefore perhaps the most striking finding of the paper and the most policy relevant one. Indeed, many OECD countries, which initially had significant minimum wages and high tax rates on low-skilled work, have moved in this direction by reducing payroll taxes on low-skilled work and expanding in-work benefits along the model of the US Earned Income Tax Credit. This result could possibly also be applied to other situations where low skilled wages are downward rigid.

There are two strands in the recent normative literature on the minimum wage. The first, most closely associated with labor economics, focuses on efficiency effects of the minimum wage in the presence of labor market imperfections such as monopsonistic competition (Robinson, 1933; Manning, 2003; Cahuc and Larouque, in press), efficiency wages (Drazen, 1986; Jones, 1987; Rebitzer and Taylor, 1995), bargaining models (Cahuc et al., 2001), signaling models (Lang, 1987; Blumkin and Sadka, 2005), search models (Swinnerton, 1996; Acemoglu, 2001; Flinn, 2006; Hungerbuhler and Lehmann, 2009), or endogenous growth models (Cahuc and Michel, 1996). In many of those situations, a minimum wage can improve efficiency absent any redistributive consideration. These studies are complementary to our analysis that focuses on the equity-efficiency trade-off under perfect competition.

A second smaller literature in public economics investigates, as we do, whether the minimum wage is desirable for redistributive reasons on top of optimal taxes and transfers. In contrast to our occupational choice model, this previous literature has mostly focused on the Stiglitz (1982) model with two skills and endogenous and competitive choice model. This previous literature has mostly focused on the question of whether the minimum wage is desirable for redistributive reasons. These studies are complementary to our analysis that focuses on the equity-efficiency trade-off under perfect competition.

We consider a simple model with two labor inputs where production of a unique consumption good $F(h_1, h_2)$ depends on the number of low-skilled workers h_1 and the number of high-skilled workers h_2. We assume constant returns to scale in production. As we shall see, the production function can be generalized to many labor inputs without affecting the substance of our results. We assume perfectly competitive markets so that firms take wages (w_1, w_2) as given. The production sector chooses labor demand (h_1, h_2) to maximize profits: $\Pi = F(h_1, h_2) - w_1 h_1 - w_2 h_2$, which leads to the standard first order conditions where wages are equal to marginal product:

$$w_i = \frac{\partial F}{\partial h_i},$$

for $i = 1, 2$. We will assume that we always have $w_1 < w_2$ in the equilibria we consider.3

2.2. Supply side

Each individual faces costs $\theta = (\theta_1, \theta_2)$ of working in occupations 1 and 2 respectively and has three labor supply options: (1) not work and earn zero, which we henceforth denote occupation 0, (2) work in occupation 1 in the low-skilled sector and earn w_1 at cost θ_1, (3) work in occupation 2 in the high-skilled sector and earn w_2 at cost θ_2. The cost of work vector θ is smoothly distributed across individuals in the population with cumulative distribution $H(\theta)$ and support θ. The population is normalized to one. Heterogeneity in θ reflects heterogeneity in ability and taste for work. Costs θ can also represent the costs of acquiring skills through education so that our framework can also capture long-term human capital investments.

We realistically assume that the government can observe earnings outcomes $(0, w_1, w_2)$, but not the individual costs of work θ. Therefore, the government can condition tax and transfers only on observable earnings outcomes. As there are only three outcomes, we can denote by T_i with $i = 0, 1, 2$ the tax on each of the three possible earnings outcomes $w = 0, w_1, w_2$ and by $c_i = w_i - T_i$ the disposable income

2 In contrast, Roadway and Cuff (2001), using a continuum of skills model as in Mirrlees (1971), show that a minimum wage policy combined with forcing non-working welfare recipients to look for jobs (and accept job offers) indirectly reveals skills at the bottom of the distribution. This can be exploited by the government to target welfare on low skilled individuals, thus improving upon the standard Mirrlees (1971) allocation.

3 This is not a strong assumption. If we had $w_2 < w_1$, then the definition of high-skilled vs. low-skilled labor would naturally be reversed.
in each situation. This represents a fully general nonlinear income tax on earnings as in Saez (2002).

We rule out income effects by assuming that utility is linear. Each individual chooses an occupation \(i = 0, 1, 2\) which maximizes utility \(u_i = c_i - \theta_i\) (assuming \(\theta_0 = 0\) with a slight abuse of notation). Let \(\Theta_i = \{\theta \in \Theta | \theta = \max \theta_i\}\) denote the subset of individuals choosing occupation \(i\). Let \(h_i(c) = |\theta_i|\) be the aggregate supply function, i.e., the fraction of the population working in occupation \(i\) as a function of the disposable income vector \(c = (c_0, c_1, c_2)\). We assume that the distribution \(H(\theta)\) is regular enough so that the aggregate supply functions \(h_i(c)\) are also smooth. Importantly, our simple discrete supply labor model captures both the extensive and intensive labor supply margins. The extensive margin is for individuals choosing between working and not working, and the intensive margin is for individuals choosing between occupation 1 and occupation 2.

2.3. Competitive equilibrium

If there is no minimum wage, for given tax parameters \(T_0, T_1, T_2\) defining a tax and transfer system, combining the demand side and the supply side defines the competitive equilibrium \((h_1, h_2, w_1, w_2)\).

It is useful to depict the competitive equilibrium for low-skilled labor in our model using the standard supply and demand curve representation as in Fig. 1. Both the demand \(D_1(w_1)\) and supply \(S_1(w_1)\) curves in the low-skilled labor market are defined assuming that the market clears in the high-skilled labor market as we describe in Appendix A.1. Therefore, Fig. 1 implicitly captures general equilibrium effects as well. This representation is useful for the analysis of the minimum wage because the demand equation always holds as employers cannot be forced to hire or lay off workers. The low-skilled labor demand elasticity \(\eta_1\) is defined as:

\[
\eta_1 = -\frac{w_1}{h_1}D'_1(w_1),
\]

where the minus sign normalization is used so that \(\eta_1 > 0\).

2.4. Government social welfare objective

Assuming no exogenous spending requirement, the government budget constraint is:

\[
h_0c_0 + h_1c_1 + h_2c_2 \leq h_1w_1 + h_2w_2.
\]

We will denote by \(\lambda\) the Lagrange multiplier associated with this constraint in the government’s optimization problem.

As is standard in the optimal taxation literature, we assume that the government evaluates outcomes using a social welfare function of the form: \(SW = \int G(u)dH(\theta)\) where \(u \rightarrow G(u)\) is an increasing and concave transformation of the individual money metric of individual utilities \(u = c_i - \theta_i\). The concavity of \(G(.)\) represents either individuals’ decreasing marginal utility of money and/or the social preferences for redistribution. Given the structure of our model, we can write social welfare as:

\[
SW = (1 - h_1 - h_2)G(c_0) + \int_0^{\theta_1} G(c_1 - \theta_1)dH(\theta) + \int_0^{\theta_2} G(c_2 - \theta_2)dH(\theta).
\]

It is useful for our analysis to introduce the concept of social marginal welfare weights for each occupation. Formally, we define \(g_0 = G(c_0)/\lambda\) and \(g_i = \int_0^{\theta_i} G(c_i - \theta_i)dH(\theta)/(\lambda \cdot h_i)\) as the average social marginal welfare weight of individuals in occupation \(i = 1, 2\). Intuitively, \(g_i\) measures the social marginal value of redistributing one dollar uniformly across all individuals in occupation \(i\). In our model, because all individuals have a choice to not work and receive payoff \(c_0\), workers will always be better off than non-workers in equilibrium. Hence concavity of \(G(.)\) implies \(g_0 > g_1\) and \(g_0 > g_2\).

Because of no income effects in labor supply, when the government sets \(c_0, c_1, c_2\) optimally, we have:

\[
h_0g_0 + h_1g_1 + h_2g_2 = 1.
\]

This can be proven as follows. Suppose that the government simultaneously increases \(c_0, c_1, c_2\) all by \(\$1\). Because of no income effects, there are no behavioral responses so that the total fiscal cost is equal to the mechanical fiscal cost of \$1. The social welfare gain (expressed in terms of government funds) is by definition equal to \(h_0g_0 + h_1g_1 + h_2g_2\), which proves Eq. (5).

3. Desirability of the minimum wage with no taxes

Let us assume away taxes and transfers in this section so that \(T_0 = T_1 = T_2 = 0\) and \(c_0 = 0\). \(c_1 = w_1\), \(c_2 = w_2\). While this analysis is not directly necessary to understand the case with optimal taxes covered in Section 4, it is worth presenting as it does not seem to have ever been presented in prior work and it helps build intuition on the key tradeoffs created by the minimum wage.

Starting from the market equilibrium \((w_1, w_2, h_1, h_2)\) illustrated in Fig. 1, we introduce a small minimum wage just above the low-skilled wage \(w_1\), which we denote by \(w = w_1 + dw\). As shown in Fig. 1, the minimum wage creates loss of employment in the low-skilled labor market. Those losing their job because of the minimum wage either become unemployed and earn zero or shift to the high-skilled sector and earn \(w_2\) depending on which occupation was their second-best option. Conceptually, the minimum wage creates an allocation problem: which workers lose their low-skilled job due to the minimum wage? Let us introduce the important assumption of efficient rationing.

Assumption 1. Efficient rationing

Workers who involuntarily lose their low-skilled jobs due to the minimum wage are those with the least surplus from working in the low-skilled sector.
Obviously, the case with efficient rationing is the most favorable to minimum wage policy, and we will discuss how our results change when this assumption is relaxed. Can the efficient rationing assumption be justified based on empirical evidence? Evidence of unemployment effects of the US minimum wage is stronger among teenagers and secondary earners (Neumark and Wascher, 2007) who are likely to be more elastic – and hence have a lower surplus – suggesting that rationing might be efficient. More directly, Luttmer (2007) used variation in state minimum wages and showed that (proxies for) reservation wages do not increase following an increase in the minimum wage, suggesting that minimum wage induced rationing is efficient.\(^6\) We note, however, that even if rationing is found to be efficient empirically, it is still possible that significant resources (such as queuing or search costs) have been dissipated to reach this efficient outcome.\(^7\)

An important theoretical point is that if employers reduce employment by reducing hours of work across the board – instead of laying off workers – then efficient rationing will automatically hold and we would obtain the same conclusions as in our discrete choice labor supply model. We outline such a model with variable hours of work in Section 5.

Proposition 1. With no taxes/transfer, if (1) Assumption 1 holds (efficient rationing); (2) the government values redistribution from high-skilled workers toward low-skilled workers \((g_1 > g_2)\); (3) the demand elasticity for low-skilled workers is finite; and (4) the supply elasticity of low-skilled workers is positive, then introducing a minimum wage increases social welfare.

The formal proof is in Appendix A.2 but a graphical and intuitive proof is provided in Fig. 1. The small minimum wage creates changes \(dw_1, dw_2, dw_3, dw_4\) in our key variables of interest. By definition, \(dw_1 = dw\). From \(\Pi = F(h_1, h_2) - w_1h_1 - w_2h_2\), we have \(d\Pi = \sum_1, (\partial F/\partial h_1)dh_1 - w_1dh_1 - h_2dw_1 = -h_1dw_1 - h_2dw_2\) using (1). The no profit condition \(\Pi = 0\) then implies \(d\Pi = 0\) and hence:

\[
h_1dw_1 + h_2dw_2 = 0.\tag{6}\]

Eq. (6) is fundamental and shows that the earnings gain of low-skilled workers \(h_1dw_1 > 0\) (the shaded rectangle on Fig. 1) due to a small minimum wage is entirely compensated by an earnings loss of high-skilled workers \(h_2dw_2 < 0\). If \(g_2 < g_1\), i.e., the government values redistribution from high-skilled workers to low-skilled workers, such a transfer creates a first order gain in social welfare equal to \(\lambda g_1 g_2 h_1 [h_2dw_2].\)

Under efficient rationing, as can be seen in Fig. 1, as long as the supply elasticity is positive (non-vertical supply curve) and the demand elasticity is finite (non-horizontal demand curve), those who lose their low-skilled job because of \(dw\) have infinitesimal surplus. Therefore, the welfare loss due to involuntary unemployment caused by the minimum wage is second order and represented by the shaded triangle, exactly as in the standard Harberger deadweight burden analysis.\(^{10}\)

It is useful to briefly analyze the desirability of the minimum wage when any of the four conditions required in Proposition 1 does not hold.

First and most importantly, if the efficient rationing assumption condition (1) is replaced by uniform rationing (i.e., unemployment strikes independently of surplus), then a small minimum wage creates a first order welfare loss. In that case, a minimum wage may or may not be desirable depending on the parameters of the model (see Lee and Saez, 2008 for a formal analysis of that case).

Condition (2) is necessary. It obviously fails if the government does not care about redistribution at all \((g_1 = g_2)\). It also fails in the extreme case where the government has Rawlsian preferences and only cares about those out of work, meaning it values the marginal income of low- and high-skilled workers equally \((g_1 = g_2 = 0)\). Therefore, a minimum wage is desirable only for intermediate redistributive tastes.\(^9\)

Condition (3) is also necessary. If the demand elasticity is infinite, which in our model is equivalent to assuming that low- and high-skilled workers are perfect substitutes, (so that \(F = \alpha_1 h_1 + \alpha_2 h_2\) with fixed parameters \(\alpha_1, \alpha_2\)), then any minimum wage set above the competitive wage \(w_1 = \alpha_1\) will completely shut down the low-skilled labor market and therefore cannot be desirable. A large body of empirical work suggests that the demand elasticity for low-skilled labor is not infinite (see Hamermesh, 1996 for a survey). In addition, evidence of a spike in the wage density distribution at the minimum wage also implies a finite demand elasticity (Card and Krueger, 1995).

When condition (4) breaks down and the supply elasticity is zero, then there are no marginal workers with zero surplus from working. Therefore, the unemployment welfare loss is no longer second order. In that context, whether or not a minimum wage is desirable depends on the parameters of the model (specifically, the reservation wages of low-skilled workers and the size of demand elasticity).\(^8\) Empirically, however, a large body of work has shown that there are substantial participation supply elasticities for low-skilled workers (see e.g., Blundell and MacCurdy, 1999 for a survey).

The logic of Proposition 1 easily extends to a more general model with many labor inputs (including a continuum with a smooth wage density), a capital input or pure profits, and many consumption goods. In those contexts, \(g_1\) is the average social welfare weight across each factor bearing the incidence of the minimum wage increase.

Finally, as a transition to the next section where we consider the case with optimal taxes and transfers, it is important to note that a minimum wage cannot be replicated with taxes or subsidies. Returning to Fig. 1, it is tempting to think that a small tax on low-skilled workers creates the same wedge between supply and demand as the minimum wage. However, to replicate the welfare consequences of the minimum wage, this small tax would have to be rebated lump-sum to low-skilled workers only. But if the tax were rebated to low-skilled workers, those who dropped out of low-skilled work because of the tax would want to come back to work. Alternatively, increasing the disposable income of low skilled workers could be achieved with a small subsidy for low skilled workers, instead of a small minimum wage. However, a small subsidy would increase low-skilled labor supply \(h_1\) which would then drive down \(w_1\), and hence drive up \(w_2\) through general equilibrium effects as \(h_1 dw_1 + h_2 dw_2 = 0\). Therefore, part of the low-skilled subsidy would be shifted to the high-skilled. Hence, a wage subsidy cannot replicate the minimum wage either. Therefore, without a rationing mechanism preventing labor supply responses, taxes or subsidies cannot achieve the minimum wage allocation.

4. Minimum wage with taxes and transfers

In this section, we assume that the government can also use taxes and transfers, i.e., set \(T_0, T_1, T_2\), or equivalently set \(c_0, c_1, c_2\), to maximize

\(^6\) This is in contrast to a situation with low turnover, such as in the housing market with rent control, as in Glaeser and Luttmer (2003).

\(^7\) Therefore, in the presence of significant search frictions, we cannot directly apply our theoretical results and a micro-founded search modeling approach along the lines of Hungerbuehler and Lehmann (2009) is required.

\(^8\) Formally, with no taxes or transfers, the government multiplier \(\lambda\) is not defined. However, we can always define \(\lambda\) such that Eq. (5) holds as \(\lambda\) does not affect the relative ranking of \(g_1\) and \(g_2\).

\(^9\) Of course, one way in which condition (1) might fail in practice is if minimum wage workers belong to well-off families (for example teenagers or secondary earners). Knieser (1981), Johnson and Browning (1983) and Burkhauser et al. (1996) empirically analyze this issue in the United States.

\(^10\) The well known result that a minimum wage cannot be desirable if \(\eta_1 > 0\) is based on such a model with fixed labor supply (see e.g. Freeman, 1996; Dolado et al., 2000).
social welfare. As mentioned above, absent the minimum wage, this is an optimal income tax model with discrete occupational choices as in Saez (2002). In addition, the model has endogenous wages w_1, w_2 instead of fixed wages as in Saez (2002) but, as is well known since Diamond and Mirrlees (1971), this does not affect optimal tax formulas. Therefore, absent the minimum wage, the optimal tax formulas derived in Saez (2002) continue to apply in our model.

4.1. Minimum wage desirability under efficient rationing

Proposition 2. Under Assumption 1 (efficient rationing), assuming $\eta_1 < \infty$, if $g_1 > 1$ at the optimal tax allocation (with no minimum wage), then introducing a minimum wage is desirable. Furthermore, at the joint minimum wage and tax optimum, we have:

- $g_1 = 1$ (Full redistribution to low-skilled workers)
- $h_0g_0 + h_gg_1 + h_2g_2 = 1$ (Social welfare weights average to one)

The formal proof is in Appendix A.3 (along with a standard (w, c) diagram) but an intuitive illustration of the result is provided in Fig. 2. In Panel a, without the minimum wage, an attempt to increase c_1 by dc_1 while keeping c_0 and c_2 constant through an increased work subsidy provides incentives for some of the non-workers to start working in occupation 1 (extensive labor supply response) and for some of workers in occupation 2 to switch to occupation 1 (intensive labor supply response). This leads to the familiar result of a reduction in w_1 through demand side effects (as long as $\eta_1 < \infty$).

But consider the same attempt to increase c_1 when the minimum wage was initially set at $w = w^*_1$, where (w_1^*, c_1^*) is the the optimal tax and transfer system which maximizes social welfare absent the minimum wage. As illustrated in Panel b, in the presence of a minimum wage w set at w_1, c_1 cannot fall, implying that the labor supply responses are effectively blocked. The assumption of efficient rationing is a key here as individuals willing to shift to occupation 1 are precisely those with the lowest surplus from working in occupation 1 relative to their next best option.

Given that the labor supply channel is effectively shut down by the minimum wage, the dc_1 change is like a lump-sum tax reform and its net welfare effect is simply $[g_1 - 1]h_1dc_1$. This implies that if $g_1 > 1$, introducing a minimum wage improves upon the tax/transfer optimum allocation which proves the first part of the proposition.

Because increasing c_1 is a pure lumpsum transfer, it should be carried out until $g_1 = 1$ which proves the second part. The third part is obtained as in the standard case by considering distributing an extra dollar to every individual. As there are no income effects, this does not generate any behavioral response even in the presence of the minimum wage. This costs $\$1$ to the government but generates social welfare equal to $h_0g_0 + h_gg_1 + h_2g_2$ so that the equality holds at the new optimum with minimum wage as well.

Note that Fig. 2 (and Fig. 3 below) are meant to illustrate the main intuition behind the result, but do not adequately illustrate general equilibrium effects. A rigorous proof, as well as a standard (w, c) diagram are provided in Appendix A.3.

The proof presented here shows that Proposition 2 remains true even if the starting tax and transfer system is not initially optimized. As long as $g_1 > 1$, the reform described is desirable. The results also naturally carry over to a model with many occupations (instead of two), capital input factors, or many consumption goods, as long as the government can specifically adjust the net price of low-skilled work c_1.

In terms of practical policy recommendation, Proposition 2 implies that additional transfers to low-skilled workers are more effective when low-skilled wages are downward rigid because of a binding minimum wage. In the absence of a rigid wage, exactly as stated in our proof, low-skilled wages would fall and high-skilled wages would rise through wage incidence effects, partially offsetting the initial transfer. Empirically, Rothstein (2010) shows that those incidence effects are not small in the case of the earned income tax credit (EITC) expansions of the 1990s in the United States. With his preferred estimates, he finds that the EITC increases after-tax incomes of low-skilled workers by only $\$0.73 per dollar spent. With a binding minimum wage, and under the strong assumption of efficient rationing, Proposition 2 implies that an EITC expansion would increase after-tax incomes of low-skilled workers dollar for dollar.

Compared to the case with no taxes in Section 3, we note that when $g_2 < 1$, the condition $g_1 > 1$ is stronger than the earlier condition $g_1 > g_2$. $g_2 < 1$ is a natural assumption as higher skilled workers are better off than the average. However, if the government desires more redistribution at the no-minimum wage equilibrium, then $g_1 > 1$ is a weak condition as the low-skilled sector can be chosen to represent the very lowest
income workers.12 This also implies that, in the presence of many factors of production or many output goods, the incidence of the minimum wage on other factors (captured by the term g_2 in the case with no taxes) becomes irrelevant with taxes and transfers. In particular, whether the minimum wage creates neo-classical spill-over effects on slightly higher wages and whether the minimum wage increases prices of goods disproportionately consumed by low income families is irrelevant when assessing the desirability of the minimum wage in the presence of optimal taxes. The only relevant factor is whether the government values redistribution to minimum wage workers relative to an across the board lump-sum redistribution (i.e., the condition $g_1 > 1$).

Finally, the desirability of the minimum wage hinges again crucially on the “efficient rationing” assumption. Under “uniform rationing”, where unemployment strikes independently of surplus, the minimum wage cannot improve upon the optimal tax allocation, a point formally proven in Lee and Saez (2008). Indeed, with efficient rationing, a minimum wage effectively reveals the marginal workers to the government. Because government values redistribution to minimum wage workers relative to the participation tax rate on low-skilled work τ_1, then Proposition 3 remains valid.15

Finally, our previous result that the optimal minimum wage following an inverted U-shape pattern with the strength of redistributive tastes also carries over to the case with optimal taxes. Extreme redistributive (Rawlsian) tastes imply that $g_1 = 0 < 1$ and thus no minimum wage is desirable to supplement optimal tax policy. Conversely, no redistributive tastes imply that $g_0 = g_1 = g_2 = 1$, a situation where no minimum wage (nor any tax or transfer) is desirable.

4.2. Pareto improving reform

Proposition 2 shows that in the presence of a minimum wage, redistribution to low-skilled workers can be made “lumpsum” in nature, and hence is more desirable. This suggests that the minimum wage and low-skilled work subsidies (such as the EITC in the United States) might be complementary. As we shall see, this is indeed the case when labor supply responses are solely along the extensive margin.

Let us therefore consider a model with only extensive labor supply responses where workers cannot switch from occupation 1 to occupation 2 (and vice-versa). For example, workers are of two types: educated or uneducated. Educated workers can only work in the high-skilled sector and uneducated workers can only work in the low-skilled sector but there remains heterogeneity in costs of work within education classes. Empirical labor supply studies suggest that the extensive labor supply margin is most important, particularly at the bottom of the distribution (see e.g., Blundell and MaCurdy, 1999) for a recent survey), which makes this particular case highly relevant in practice. In this model, we can define the participation tax rate on low-skilled work $\tau_1 = 1 - \tau_1 = (c_1 - c_0)/w_1$ or equivalently $c_1 = c_0 + (1 - \tau_1)w_1$, i.e., low-skilled individuals keep only a fraction $1 - \tau_1$ of their earnings when they work and earn w_1. We can then prove the following result:

Proposition 3. In a model with extensive labor supply responses only, a binding minimum wage associated with a positive tax rate on minimum wage earnings ($\tau_1 > 0$) is second-best Pareto inefficient. This result remains a fortiori true when rationing is not efficient.

The formal proof is presented in Appendix A.4, along with a standard (w, c) diagram. The intuition behind Proposition 3 is illustrated in Fig. 3 which depicts a situation with a binding minimum wage and a positive tax rate on low-skilled work $\tau_1 > 0$. Suppose that the government reduces the minimum wage (by τ_0) while keeping c_0, c_1, c_2 constant. Reducing the minimum wage leads to a positive employment effect $d1 > 0$ as involuntary unemployment is reduced, improving the welfare of the newly employed workers and increasing tax revenue as $\tau_1 > 0$. The increase $d1 > 0$ also leads to a change $\tau_2 > 0$. However, because $h_1\tau_1 + h_2\tau_2 = 0$, the mechanical fiscal effect of τ_0 and τ_2, keeping c_1 and c_2 constant, is zero. Because c_0, c_1, c_2 remain constant, nobody’s welfare is reduced. The increase in welfare due to the reduction in unemployment remains a fortiori true if rationing is not efficient. Therefore, this reform is a second-best Pareto improvement.

Note that if workers respond along the intensive margin, the minimum wage generates not only involuntary unemployment, but also involuntary over-work as high-skilled workers are also rationed out. In that case, a minimum wage decrease would induce some high-skilled workers to become minimum wage workers, reducing government revenue so that Proposition 3 would not necessarily hold anymore. However, the fact that the minimum wage can create over-work is hardly ever discussed in empirical studies, suggesting that the intensive response channel is unimportant empirically. Furthermore, even if intensive responses are allowed (for example, workers decide how much to invest in education early in life) but we make the additional assumption that the rationing generated by the minimum wage hits only low-skilled individuals (and never prevents higher skilled workers from taking minimum wage work), then Proposition 3 remains valid. Proposition 3 implies that, when labor supply responses are concentrated along the extensive margin, a minimum wage should always be associated with low-skilled work subsidies such as the US EITC or the British Family Credit. Proposition 3 may have wide applicability because many OECD countries, especially in continental Europe, combine significant minimum wages (OECD 1998, Immervoll, 2007) with very high

12 Our model includes only two skills for simplicity but all the results carry over with no change if we assume a large number of skills so that the bottom skill represents very low paid workers.

13 Because, $c_0 - c_2$ remains constant, h_2 does not change either.

14 Formally, this requires assuming that the pecking order for the rationing mechanism does not change when the tax system or minimum wage change. If this is not the case and there is an entirely new draw in the rationing allocation, some of the formerly employed low-skilled workers could lose their job. Even in that case, any social welfare objective that is neutral with respect to the pecking order for rationing would increase.

15 Note that this assumption violates efficient rationing. However, it may be realistic that employers could preferentially hire the most qualified workers even for minimum wage jobs.
tax rates on low-skilled work (Immervoll et al., 2007). The high tax rates are generated by substantial payroll tax rates (financing social security benefits) and by the high phasing-out rates of traditional mean-tested transfer programs.

In practice, the reform described in Proposition 3 could be achieved by cutting the employer payroll taxes for low income workers which lowers the (gross) minimum wage without affecting the net minimum wage after taxes and transfers. Such a policy should stimulate low-skilled employment and increase high-skilled wages. Thus, the direct loss in tax revenue due to the payroll tax cut on low-skilled workers could be recouped by adjusting upward taxes on high earning workers (without hurting high earning workers on net). A number of OECD countries have already implemented such policy reforms over the last 20 years. For example, France started reducing the employer payroll tax on low income workers in the early 1990s (see Crépon and Desplat, 2002 for an empirical analysis).

The US policy in recent decades of letting inflation erode the minimum wage while expanding the earned income tax credit is closely related. The EITC expansions compensate minimum wage workers (at least those minimum wage workers eligible for the EITC, i.e. primarily single mothers) for the erosion in the minimum wage and attract previously unemployed workers into the labor force increasing their welfare and increasing tax revenue (assuming \(\tau _1 > 0 \) because of the phasing-out of welfare programs and payroll taxes). In principle, the direct fiscal cost of the EITC expansion (which maintains \(c_1 \) constant) can be recouped by increasing \(\tau _2 \) as \(w_2 \) increases (so that \(c_2 \) also stays constant).

4.3. Other sources of wage rigidity

Low-skilled wages can be rigid and above their market clearing equilibrium for other reasons than a minimum wage. For example, unions and wage bargaining agreements may lead to low-skilled wages set above their marginal product. Similarly, downward wage rigidity might prevent low-skilled wages from falling after a downturn or a technological shock favoring high-skilled workers. If we assume that such wage rigidities do not respond to taxes and transfers \(^{18} \) and that employers hire low-skilled labor to maximize profits so that the competitive demand equations always hold, the model is identical to the minimum wage model we have presented and therefore our results carry over as follows.

Proposition 2 implies that the government would welcome downward wage rigidity for low-skilled labor as a way to enhance the redistributive power of low-skilled work subsidies, under the strong assumption that rationing due to the rigidity is efficient. As we discussed above, EITC expansions would generate a greater transfer to low-skilled workers (per dollar spent) if, for example, unions were protecting low-skilled wages from falling through standard incidence effects.

Perhaps more importantly, Proposition 3 implies that, when low-skilled work is taxed and has a rigid wage above its market clearing level, the government could implement a Pareto improving policy if it can bring down low-skilled wages while at the same time adjusting the tax and transfer system. In the case of a union keeping \(w_1 \) above equilibrium for example, that would require the government to directly bargain with the union for an increase of in-work benefits (paid for by higher taxes on high-skilled workers) in exchange for lower wage demands from the union. A cut in employer payroll taxes for low wage earners achieves this dual goal without requiring formal union agreement (as long as unions do not correspondingly ask for higher wages to absorb the payroll tax cut). In the case of a negative technology shock (real business cycle driven recession), wage rigidity may drive wages above their marginal product and create unemployment. In that case, a temporary employer payroll tax cut allows the government to reduce pre-tax wages, reduce unemployment, and can be financed by a tax increase on other factors.

5. Labor supply with variable hours of work

In this section, we consider the conventional hours-of-work model of labor supply. This allows us to compare and contrast our results with the previous literature which has used the variable-hours model both on theoretical and empirical grounds. To illustrate the theoretical point, we then show that our results extend to the variable-hours model only if we make the strong and unrealistic assumption that the government can use occupation-specific linear tax rates on earnings.

5.1. Model and preliminary remarks

We modify our model from the previous sections as follows. Suppose that an individual of skill \(i \) can supply \(h \) hours of work in occupation \(i \) (and solely in occupation \(i \)) with utility function \(u(c, l) = c - v(l) \) where disutility of work \(v(l) \) is increasing and convex in \(l \). We assume away fixed costs of work so that everybody works and we assume that skills are exogenously set for simplicity. Two important preliminary remarks are worth noting.

First, the hours-of-work model naturally produces efficient rationing when employers cut low-skilled work by reducing hours across all low-skilled employees in the presence of a (small) minimum wage. That is, if employees are choosing their optimal level of hours of work, then they receive no surplus from their marginal hour of work and hence a small reduction in hours of work has no first order effect on welfare.\(^{19} \)

Second, in the case with no taxes, our results in Proposition 1 carry over unchanged in this model with variable hours of work. The analysis of Fig. 1 carries over by re-interpreting \(h_1 \) as hours of work per low-skilled worker (instead of number of low-skilled workers). A small minimum wage produces a desirable first order transfer from high-skilled workers to low-skilled workers (if \(g_1 > g_2 \)) and has only a second order welfare effect, since low-skilled workers get no surplus from their marginal hour of work.

5.2. Information consistency of taxation and minimum wage

In this model with elastic hours of work and no occupational choice, the government can achieve complete redistribution at no efficiency costs by conditioning taxes on wage rates (as opposed to income). In that case, no minimum wage would be required. The traditional assumption since Mirrlees (1971) is that the government cannot observe wage rates \(w_i \) and hence has to condition taxes on income. However, as recognized by the previous literature (e.g., Guesnerie and Roberts, 1987), this traditional assumption is not immediately consistent with

\(^{18} \) This is undoubtedly a strong assumption, especially in the long-run, as for example union contracts could be re-negotiated following a change in taxes or transfers. We precisely argue below that the government might indeed want to push for such renegotiation (equivalent to changing the minimum wage in our basic model) in some cases.

\(^{19} \) In fact, it is possible that the failure to detect strong employment effects of the minimum wage in the United States is due in part to the fact that employers adjust hours of work rather than number of employees. It is easy to show that, in a model with both hours of work and participation labor supply responses, if employers ration hours per job rather than number of jobs, a small minimum wage increase can actually increase employment (as some individuals may decide to start working) while reducing hours per job and total hours.
the ability of implementing a minimum wage. 20 In practice, governments simultaneously impose minimum wages based on wage rates and income and payroll taxes based on earnings. A realistic explanation could be the following. 21 While the government cannot observe wage rates, it can enforce a minimum wage by rewarding workers who denounce employers paying sub-minimum wages. If we assume that (a) wages are observable by the government after a careful and possibly costly audit following a whistle blowing claim, (b) there is a sufficient reward for truthful whistle blowers, (c) employees cannot credibly commit to not whistle blow when they negotiate a wage with their employer, then the minimum wage will be self-enforced at no cost. 22 In equilibrium, the government does not observe wages yet firms comply with the minimum wage and hence enforcement is costless.

5.3. Comparison with earlier results in the Stiglitz (1982) model

The standard approach of analyzing the minimum wages with optimal taxes is to consider the Stiglitz (1982) discrete model of optimal taxation. Recall that in the Stiglitz model, individual utilities are the same as in the variable hours model described above but the income tax has to depend solely on earnings w. Hence, the high- and low-skilled workers face the same nonlinear tax system T(·) on earnings. The incentive compatibility constraint states that high-skilled workers do not want to imitate low-skilled workers. Denoting by (c₁, l₁) the optimal allocations, the incentive compatibility constraint can be written as

\[c₂ - v₂(l₂) \geq c₁ - v₂(w₁/l₁) \]

as a high-skilled worker only needs to work w₁/l₁ hours to imitate the earnings w₁ of a low-skilled worker. Therefore, in this model, setting the minimum wage at w₁ does not make it more difficult for a high-skilled worker to imitate a low-skilled worker. Hence, in the Stiglitz (1982) model, the minimum wage does nothing to prevent undesirable labor supply responses to an increase in the generosity of c₁. As a result, and as proven by Allen (1987) and Guesnerie and Roberts (1987), the minimum wage is not useful in this model.

This is in contrast to the model we have presented in Section 4 where a minimum wage allows to increase c₁ without triggering adverse labor supply responses as low-skilled work becomes rationed and high-skilled workers (and non-workers) cannot get the low-skilled jobs (as shown in Fig. 2 and Appendix Fig. A1).

The key difference between the Stiglitz (1982) model and our occupational model of Section 4 is the nature of the behavioral responses to taxes. When low earners are subsidized, do we observe high earners cutting down their hours—while staying in the highly paid sector—to take advantage of the low earners subsidy as in the Stiglitz model? Or do we observe instead more high-skilled work due to participation responses and high-skilled people taking low-skilled jobs as in our model of Section 4? In the short-run, it is conceivable that responses of the Stiglitz (1982) type could take place as skills are exogenous and individuals cannot move from occupation to occupation. In the long-run, however, it seems more realistic to assume that individuals choose their occupation based on the relative after-tax rewards as in our model of Section 4.

The empirical literature has clearly shown evidence of responses along the participation margin while less evidence of strong behavioral responses have been obtained along the intensive hours-of-work margin, consistent with the model of Section 4 rather than the Stiglitz (1982) model. Interestingly and consistent with this discussion, when implicitly introducing fixed costs of work—and hence a participation margin—in the Stiglitz model, Marceau and Boadway (1994) show that a minimum wage could be desirable even with

20 The occupational model developed earlier avoided this informational inconsistency as there was no choice of hours.

21 We thank an anonymous referee for suggesting to us this explanation.

22 This mechanism is similar to the employment income tax enforcement mechanism proposed by Kleven et al. (2009).
desirable as long as $g_1 > 1$. As a strong caveat, it is important to re-emphasize that this extension is primarily made to illustrate the theoretical discussion because it is not realistic to assume that the government can impose occupation specific tax rates.

6. Conclusion

Our paper proposes a theoretical analysis of optimal minimum wage policy for redistribution purposes in a perfectly competitive labor market, considering both the case with no taxes/transfer and the case with optimal taxes/transfer. In light of the previous literature on this topic, we find that the standard competitive labor market model offers a surprisingly strong case for using the minimum wage when we adopt the efficient rationing assumption. The minimum wage is a useful tool if the government values redistribution toward low wage workers, and this remains true in the presence of optimal nonlinear taxes/transfer. In that context, our model of occupational choice abstracting from hours of work allows us to focus on the labor force participation decision and avoids the informational inconsistency that plagued previous work analyzing minimum wage policy with optimal income taxation.

When low-skilled labor supply is driven by the extensive margin, as empirical studies suggest, a minimum wage should always be associated with in-work subsidies whether rationing is efficient or not. In that context, the co-existence of minimum wages and positive participation rates for low-skilled workers is (second-best) Pareto inefficient. In that situation (common in most OECD countries) a cut in employer payroll taxes decreasing the gross minimum wage while keeping the net minimum wage constant, combined with an offsetting tax increase on high-skilled workers is Pareto improving. Therefore, this result is perhaps the most striking finding of the paper and the most policy relevant one.

There are a number of issues that we have abstracted from our very stylized model that are worth pointing out as caveats and potential avenues for future research.

First, a minimum wage rationing mechanism operates very differently from a tax and transfer that alters prices, but lets markets freely clear. The rationing induced by the minimum wage creates an allocation problem with no natural market. It is conceivable that rationing and the ensuing involuntary unemployment would create additional psychological costs (such as feelings of low self-worth) that are not captured in standard models (including those with search frictions), which would make minimum wage policies less attractive in practice.

Second and related, by the same logic, rationing out-of-work benefits would be desirable if such rationing could be made efficient (i.e., benefits would go to those with the highest costs of working so that those with low costs of working would remain in the work force). In that case, however, the government would have to set up a direct rationing scheme (as opposed to indirectly letting private agents work out a rationing scheme as under a minimum wage). Re-trading of out-of-work benefits can make the allocation efficient but such re-trading could worsen inequality and hence social welfare. Tackling this issue could connect the theoretical literature on quotas following Neary and Roberts (1980), Guesnerie (1981), and Guesnerie and Roberts (1984) to the more applied literature on optimal ordeals or screening devices for welfare programs following Nichols and Zeckhauser (1982) and Besley and Coate (1992).

Finally, economies generate involuntary unemployment through other channels than minimum wage. Recent experience shows that macro-economic downturns can generate substantial unemployment. In such situations as in the case of minimum wage induced unemployment studied here, the labor supply margin becomes irrelevant as too many workers are chasing too few jobs, which can significantly change the calculus of optimal tax and transfers.26 As an important caveat, note that the policy making process might not be reactive enough to time well changes in the tax and transfer structure at business cycle frequency although automatic rules tying transfer parameters to the unemployment rate are conceivable.27

Acknowledgements

We thank co-editor Wojciech Kopczuk, two anonymous referees, Daron Acemoglu, Mario Angeletos, Pierre Cahuc, David Card, Christopher Flinn, Herwig Immervoll, Kenneth Judd, Lawrence Katz, Guy Lalour, Etienne Lehmann, and numerous seminar participants for their useful discussions and comments.

Appendix A. Formal proofs

A.1. Theoretical underpinnings of Fig. 1

Constant returns to scale and demand Eq. (1) imply that $w_2/w_1 = F_2(1,h_2/h_1)/F_1(1,h_2/h_1)$. Constant returns to scale along with decreasing marginal productivity along each skill implies that the right-hand-side is a decreasing function of h_2/h_1. Therefore, the function is invertible and the ratio h_2/h_1 can be written as a function of the wage ratio w_2/w_1: $h_2/h_1 = \rho(w_2/w_1)$ with $\rho(.)$ a decreasing function. For example, in the case of a CES production function, $F(h_1, h_2) = [\alpha h_1^{\sigma-1} + \alpha h_2^{\sigma-1}]^{-\sigma/(\sigma-1)}$, we have $h_2/h_1 = (a_2/a_1)^{\sigma} \cdot (w_2/w_1)^{1-\sigma}$.

Constant returns to scale also imply that there are no profits in equilibrium. Hence $IT = F(h_1, h_2) - w_1 h_1 - w_2 h_2 = 0$ so that $w_1 + w_2 \cdot \rho(w_2/w_1) = F(1,\rho(w_2/w_1))$, which defines a decreasing mapping between w_1 and w_2 such that we can express w_2 as a decreasing function of w_1: $w_2(w_1)$. For example, in the case of a CES production function, the equation defining $w_2(w_1)$ is $a_2^{\sigma} w_1^{1-\sigma} + a_1^{\sigma} w_2^{1-\sigma} = 1$.

Differentiating $w_1 + w_2 \cdot \rho(w_2/w_1) = F(1,\rho(w_2/w_1))$ implies that $\rho w_1 + w_2 \cdot \rho'(w_2/w_1) = F'dr$ so that, using $w_2(z_2)$, we have $\rho w_1 + w_2 = 0$. Therefore, $dw_2/dw_1 = -1/\rho(w_2/w_1) = -h_1/h_2$ which proves Eq. (6).

In Fig. 1, the supply function $S_1(w_1)$ is defined as follows. For a given w_1, the demand side defines a unique $w_2 = w_2(z_2)$ as discussed above. For given tax parameters T_0, T_1, T_2, the supply side function is defined as $S_1(w_1) = h_1 - T_0 w_1 - T_1 w_1 - T_2 w_1 - T_2$.

The definition of the demand function $D_1(w_1)$ depends on the rationing mechanism. Let us work out the case with efficient rationing.27 For a given w_1, the demand side defines a unique $w_2 = w_2(z_1)$ and pins down the ratio $h_2/h_1 = \rho(w_2(w_1)/w_1)$.

Under efficient rationing, if the wage w_1 is above (below) its competitive level, then there exist $\delta > 0$ (< 0) such that only those with surplus above δ work in occupation 1. In that case, the population will be distributed across the 3 occupations according to the functions $h_1(-T_0 w_1 - T_1 - \delta, w_2 - T_2)$ (instead of $h_1(-T_0 w_1 - T_1, w_2 - T_2)$ with no rationing). Obviously, h_1 decreases with δ and h_2 increases with δ (or is constant if there are no intensive labor supply responses). Therefore, for a given w_1, as $w_2(w_1)$ and $h_2/h_1 = \rho(w_2(w_1)/w_1)$ are pinned down, there exists a single δ such that $h_2(-T_0 w_1 - T_1 - \delta, w_2(w_1)/w_1) = h_1(-T_0 w_1 - T_1 - \delta, w_2(w_1)/w_1) - T_2 = \rho(w_2(w_1)/w_1)w_2(w_1)$.

26 For example, US states extend automatically the duration for unemployment benefits when the state unemployment rate crosses a certain level.

27 A similar derivation can be made for any other form of rationing but the formulas of course depend on the rationing form chosen. The reader can easily work out the case with uniform rationing.

25 Landais et al. (2010) develop a general equilibrium model with rigid wages and analyze optimal unemployment insurance in that context.
A.2. Proof of Proposition 1

At the competitive equilibrium \((w_1, w_2)\) with no taxes and transfers, social welfare is given by:

\[
SW = [1 - h_1 - h_2] g(0) + \int \omega_1 G(w_1 - \theta_1) dH(\theta) + \int \omega_2 G(w_2 - \theta_2) dH(\theta),
\]

where \(w_1\) is a function of \(w_1\) through the demand side as discussed in Appendix A.1 above. Consider introducing a small minimum wage \(\Delta w\) above \(w_1\). We have,

\[
\begin{align*}
dSW & = \left[\frac{dh_1}{dw} - \frac{dh_1}{dw} \right] G(0) + \int \frac{dh_1}{dw} G(w_1 - \theta_1) dH(\theta) + \int \frac{dh_2}{dw} G(w_2 - \theta_2) dH(\theta). \\
& + \int \omega_1 G(w_1 - \theta_1) dH(\theta) + \int \omega_2 G(w_2 - \theta_2) dH(\theta).
\end{align*}
\]

The second and third terms are obtained because of the efficient rationing assumption whereby those losing their low-skilled job and shifting to no work are those with the least surplus, namely zero, for having a low-skilled job. Therefore, the first three terms cancel out, and, using \(\frac{d\omega_2}{dw} = -\frac{h_1}{w_1}\) we obtain finally,

\[
dSW = h_1 \lambda g_1 - g_2 > 0,
\]

which proves the proposition. \(\square\)

A.3. Proof of Proposition 2

Social welfare and the tax transfer optimum with no minimum wage is given by:

\[
SW = [1 - h_1(c) - h_2(c)] G(c_0) + \int \omega_1 G(c_0 + \Delta c_1 - \theta_1) dH(\theta) + \int \omega_2 G(c_0 + \Delta c_2 - \theta_2) dH(\theta),
\]

where \(\Delta c_1 = c_1 - c_0\) and with budget constraint \(h_1 \cdot (w_1 - \Delta c_1) + h_2 \cdot (w_2 - \Delta c_2) \geq c_0\) (multiplier \(\lambda\)). Forming the Lagrangian \(L = SW + \lambda[h_1 \cdot (w_1 - \Delta c_1) + h_2 \cdot (w_2 - \Delta c_2) - c_0]\), let us consider a variation \(\Delta c_1\) with a binding minimum wage \(w_0\) set at the initial equilibrium as depicted in Fig. A1 in a standard \((w, c)\) diagram. We have no change in \(w_1\) by definition, hence no change in \(w_2\) either as \(w_2\) and \(w_1\) are related by \(w_2(w_1)\) based on demand constraints (Appendix A.1). Hence, there is no change in \(h_2/h_1 = \rho(w_2/w_1)\). Because \(h_1\) and \(h_2\) cannot increase (resp. decrease) simultaneously, this implies no change in both \(h_1\) and \(h_2\). As depicted in Fig. A1, with the crossed-off curly arrows, the labor supply response that would occur because of \(\Delta c_1\) cannot happen because of the minimum wage. Therefore, we obtain

\[
dll = \int \omega_1 G(c_0 + \Delta c_1 - \theta_1) dH(\theta) - \lambda h_1 = \lambda g_1 - 1/h_1.
\]

This proves the first part of the proposition. At the full optimum with taxes and transfers and the minimum wage, the condition above must be zero which implies that \(g_1 = 1\). The first order condition with respect to \(c_0\), keeping \(\Delta c_1, \Delta c_2\), and \(w\) constant implies:

\[
0 = \frac{dl}{dc_0} = [1 - h_1(c) - h_2(c)] G(c_0) + \int \omega_1 G(c_0 + \Delta c_1 - \theta_1) dH(\theta) + \int \omega_2 G(c_0 + \Delta c_2 - \theta_2) dH(\theta) - \lambda h_1 = \lambda [h_1 g_0 + h_1 g_1 + h_2 g_2 - 1],
\]

which completes the proof. \(\square\)

References
